Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.387
1.
BMJ Case Rep ; 17(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38719244

Brexpiprazole is a relatively new drug that has no published research or applications within the paediatric population. Brexpiprazole targets multiple receptors and can manifest as multisystem symptoms when ingested in supratherapeutic quantities. In this report, we discuss the case of a child in early childhood who presented with delayed neurological and cardiac symptoms 24 hours after accidental ingestion of brexpiprazole. Due to delayed onset, this case highlights that a high index of suspicion and prolonged observation are necessary to appropriately manage brexpiprazole overdose or accidental ingestion.


Quinolones , Thiophenes , Humans , Thiophenes/adverse effects , Quinolones/adverse effects , Quinolones/poisoning , Male , Drug Overdose , Child, Preschool , Antipsychotic Agents/adverse effects , Female
2.
BMJ Open Respir Res ; 11(1)2024 May 07.
Article En | MEDLINE | ID: mdl-38719503

INTRODUCTION: Bronchiectasis is a worldwide chronic lung disorder where exacerbations are common. It affects people of all ages, but especially Indigenous populations in high-income nations. Despite being a major contributor to chronic lung disease, there are no licensed therapies for bronchiectasis and there remain relatively few randomised controlled trials (RCTs) conducted in children and adults. Our RCT will address some of these unmet needs by evaluating whether the novel mucoactive agent, erdosteine, has a therapeutic role in children and adults with bronchiectasis.Our primary aim is to determine in children and adults aged 2-49 years with bronchiectasis whether regular erdosteine over a 12-month period reduces acute respiratory exacerbations compared with placebo. Our primary hypothesis is that people with bronchiectasis who regularly use erdosteine will have fewer exacerbations than those receiving placebo.Our secondary aims are to determine the effect of the trial medications on quality of life (QoL) and other clinical outcomes (exacerbation duration, time-to-next exacerbation, hospitalisations, lung function, adverse events). We will also assess the cost-effectiveness of the intervention. METHODS AND ANALYSIS: We are undertaking an international multicentre, double-blind, placebo-RCT to evaluate whether 12 months of erdosteine is beneficial for children and adults with bronchiectasis. We will recruit 194 children and adults with bronchiectasis to a parallel, superiority RCT at eight sites across Australia, Malaysia and Philippines. Our primary endpoint is the rate of exacerbations over 12 months. Our main secondary outcomes are QoL, exacerbation duration, time-to-next exacerbation, hospitalisations and lung function. ETHICS AND DISSEMINATION: The Human Research Ethics Committees (HREC) of Children's Health Queensland (for all Australian sites), University of Malaya Medical Centre (Malaysia) and St. Luke's Medical Centre (Philippines) approved the study. We will publish the results and share the outcomes with the academic and medical community, funding and relevant patient organisations. TRIAL REGISTRATION NUMBER: ACTRN12621000315819.


Bronchiectasis , Expectorants , Multicenter Studies as Topic , Quality of Life , Thioglycolates , Thiophenes , Humans , Bronchiectasis/drug therapy , Double-Blind Method , Thioglycolates/therapeutic use , Child , Adolescent , Adult , Young Adult , Thiophenes/therapeutic use , Child, Preschool , Expectorants/therapeutic use , Middle Aged , Randomized Controlled Trials as Topic , Male , Female , Disease Progression , Treatment Outcome
3.
mBio ; 15(5): e0051924, 2024 May 08.
Article En | MEDLINE | ID: mdl-38564694

Today, more than 90% of people with cystic fibrosis (pwCF) are eligible for the highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy called elexacaftor/tezacaftor/ivacaftor (ETI) and its use is widespread. Given the drastic respiratory symptom improvement experienced by many post-ETI, clinical studies are already underway to reduce the number of respiratory therapies, including antibiotic regimens, that pwCF historically relied on to combat lung disease progression. Early studies suggest that bacterial burden in the lungs is reduced post-ETI, yet it is unknown how chronic Pseudomonas aeruginosa populations are impacted by ETI. We found that pwCF remain infected throughout their upper and lower respiratory tract with their same strain of P. aeruginosa post-ETI, and these strains continue to evolve in response to the newly CFTR-corrected airway. Our work underscores the continued importance of CF airway microbiology in the new era of highly effective CFTR modulator therapy. IMPORTANCE: The highly effective cystic fibrosis transmembrane conductance regulator modulator therapy Elexakaftor/Tezacaftor/Ivacaftor (ETI) has changed cystic fibrosis (CF) disease for many people with cystic fibrosis. While respiratory symptoms are improved by ETI, we found that people with CF remain infected with Pseudomonas aeruginosa. How these persistent and evolving bacterial populations will impact the clinical manifestations of CF in the coming years remains to be seen, but the role and potentially changing face of infection in CF should not be discounted in the era of highly effective modulator therapy.


Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Drug Combinations , Indoles , Pseudomonas Infections , Pseudomonas aeruginosa , Quinolones , Cystic Fibrosis/microbiology , Cystic Fibrosis/drug therapy , Cystic Fibrosis/complications , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Aminophenols/therapeutic use , Quinolones/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Benzodioxoles/therapeutic use , Indoles/therapeutic use , Pyrazoles/therapeutic use , Pyrroles/therapeutic use , Pyridines/therapeutic use , Thiophenes/therapeutic use , Thiophenes/pharmacology , Female , Quinolines
4.
mBio ; 15(5): e0063324, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587428

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Antifungal Agents , CDPdiacylglycerol-Serine O-Phosphatidyltransferase , Candida albicans , Enzyme Inhibitors , Candida albicans/drug effects , Candida albicans/enzymology , Candida albicans/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/genetics , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Microbial Sensitivity Tests , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Phosphatidylserines/metabolism , Furans , Thiophenes
5.
J Mater Chem B ; 12(16): 4029-4038, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38586978

Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.


Drug Delivery Systems , Hydrogels , Polymers , Hydrogels/chemistry , Polymers/chemistry , Insulin/administration & dosage , Insulin/chemistry , Particle Size , Thiophenes/chemistry , Porosity , Drug Carriers/chemistry , Drug Liberation , Surface Properties
6.
J Hazard Mater ; 470: 134175, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574662

Emerging organic photoelectrochemical transistors (OPECTs) with inherent amplification capabilities, good biocompatibility and even self-powered operation have emerged as a promising detection tool, however, they are still not widely studied for pollutant detection. In this paper, a novel OPECT dual-mode aptasensor was constructed for the ultrasensitive detection of di(2-ethylhexyl) phthalate (DEHP). MXene/In2S3/In2O3 Z-scheme heterojunction was used as a light fuel for ion modulation in sensitive gated OPECT biosensing. A transistor system based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) converted biological events associated with photosensitive gate achieving nearly a thousand-fold higher current gain at zero bias voltage. This work quantified the target DEHP by aptamer-specific induction of CRISPR-Cas13a trans-cutting activity with target-dependent rolling circle amplification as the signal amplification unit, and incorporated the signal changes strategy of biocatalytic precipitation and TMB color development. Combining OPECT with the auxiliary validation of colorimetry (CM), high sensitivity and accurate detection of DEHP were achieved with a linear range of 0.1 pM to 200 pM and a minimum detection limit of 0.02 pM. This study not only provides a new method for the detection of DEHP, but also offers a promising prospect for the gating and application of the unique OPECT.


Biosensing Techniques , Diethylhexyl Phthalate , Electrochemical Techniques , Transistors, Electronic , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , CRISPR-Cas Systems , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Nucleic Acid Amplification Techniques , Polystyrenes/chemistry , Thiophenes , Water Pollutants, Chemical/analysis
7.
Org Biomol Chem ; 22(19): 3843-3847, 2024 May 15.
Article En | MEDLINE | ID: mdl-38618942

A short and chemoenzymatic synthesis of rotigotine using an IR-36-M5 mutant is reported. Focusing on the residues that directly contact the 2-tetralone moiety, we applied structure-guided semi-rational design to obtain a double-mutant F260W/M147Y, which showed a good isolated yield and S-stereoselectivity >99% toward 2-aminotetralin synthesis. Furthermore, the utility of this biocatalytic protocol was successfully demonstrated in the enantioselective synthesis of rotigotine via enzymatic reductive amination as the key step.


Tetrahydronaphthalenes , Thiophenes , Amination , Thiophenes/chemistry , Thiophenes/chemical synthesis , Tetrahydronaphthalenes/chemical synthesis , Tetrahydronaphthalenes/chemistry , Biocatalysis , Stereoisomerism , Oxidation-Reduction , Iridium/chemistry , Molecular Structure , Catalysis
8.
J Med Chem ; 67(8): 6425-6455, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38613499

The RAS-RAF-MEK-ERK signaling cascade is abnormally activated in various tumors, playing a crucial role in mediating tumor progression. As the key component at the terminal stage of this cascade, ERK1/2 emerges as a potential antitumor target and offers a promising therapeutic strategy for tumors harboring BRAF or RAS mutations. Here, we identified 36c with a (thiophen-3-yl)aminopyrimidine scaffold as a potent ERK1/2 inhibitor through structure-guided optimization for hit 18. In preclinical studies, 36c showed powerful ERK1/2 inhibitory activities (ERK1/2 IC50 = 0.11/0.08 nM) and potent antitumor efficacy both in vitro and in vivo against triple-negative breast cancer and colorectal cancer models harboring BRAF and RAS mutations. 36c could directly inhibit ERK1/2, significantly block the phosphorylation expression of their downstream substrates p90RSK and c-Myc, and induce cell apoptosis and incomplete autophagy-related cell death. Taken together, this work provides a promising ERK1/2 lead compound for multiple tumor-treatment drug discovery.


Antineoplastic Agents , Protein Kinase Inhibitors , Pyrimidines , Humans , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Thiophenes/chemistry , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Cell Line, Tumor , Drug Discovery , Apoptosis/drug effects , Female , Mice, Nude , Drug Screening Assays, Antitumor , Molecular Structure , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
9.
Sci Rep ; 14(1): 8401, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600172

REV-ERBα, a therapeutically promising nuclear hormone receptor, plays a crucial role in regulating various physiological processes such as the circadian clock, inflammation, and metabolism. However, the availability of chemical probes to investigate the pharmacology of this receptor is limited, with SR8278 being the only identified synthetic antagonist. Moreover, no X-ray crystal structures are currently available that demonstrate the binding of REV-ERBα to antagonist ligands. This lack of structural information impedes the development of targeted therapeutics. To address this issue, we employed Gaussian accelerated molecular dynamics (GaMD) simulations to investigate the binding pathway of SR8278 to REV-ERBα. For comparison, we also used GaMD to observe the ligand binding process of STL1267, for which an X-ray structure is available. GaMD simulations successfully captured the binding of both ligands to the receptor's orthosteric site and predicted the ligand binding pathway and important amino acid residues involved in the antagonist SR8278 binding. This study highlights the effectiveness of GaMD in investigating protein-ligand interactions, particularly in the context of drug recognition for nuclear hormone receptors.


Isoquinolines , Nuclear Receptor Subfamily 1, Group D, Member 1 , Ligands , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Isoquinolines/chemistry , Thiophenes/chemistry , Circadian Rhythm/physiology
10.
Biochem Pharmacol ; 223: 116194, 2024 May.
Article En | MEDLINE | ID: mdl-38583812

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Aniline Compounds , Diterpenes , Thiophenes , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Thioredoxin Reductase 1 , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy
11.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38593589

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Aniline Compounds , Ferroptosis , Naphthoquinones , Neoplasms , Thiophenes , Humans , Naphthoquinones/pharmacology , Apoptosis
12.
Huan Jing Ke Xue ; 45(5): 2678-2685, 2024 May 08.
Article Zh | MEDLINE | ID: mdl-38629531

Xingkai Lake, located in Heilongjiang Province, is an important fishery and agricultural base and is seriously polluted by agricultural non-point sources. To clarify the residual status of many pesticides in the surface water of Xingkai Lake, 27 types of pesticides, herbicides, and their degradation products were analyzed in rice paddy, drainage, and surface water around Xingkai Lake (China) during the rice heading and maturity periods. The results showed that all 27 types of pesticides, herbicides, and their degradation products were detected during the rice heading period, and the total concentration ranged from 247.97 to 6 094.49 ng·L-1. Additionally, 25 species were detected during the rice maturity period, and the total concentration ranged from 485.36 to 796.23 ng·L-1. In comparison, more pesticides, herbicides, and derived degradation products were detected during the heading period, and their total concentration was higher as well. During the rice heading period, atrazine, simetryn, and paclobutrazol were the main detected pesticides, atrazine and isoprothiolane were the main pesticides detected during the maturity period. The distribution characteristics of pesticides and herbicides in the surface water around Xingkai Lake (China) was similar to that in drainage, so they were probably imported from the drainage and rice paddy. The average risk quotient (RQ) values of atrazine, simetryn, prometryn, butachlor, isoprothiolane, and oxadiazon were higher than 0.1 in drainage and Xingkai Lake (China), which showed a potential risk to aquatic organisms.


Atrazine , Herbicides , Pesticide Residues , Pesticides , Thiophenes , Water Pollutants, Chemical , Pesticides/analysis , Pesticide Residues/analysis , Lakes , Environmental Monitoring , Water/chemistry , China , Risk Assessment , Water Pollutants, Chemical/analysis
13.
J Vet Sci ; 25(2): e21, 2024 Mar.
Article En | MEDLINE | ID: mdl-38568823

BACKGROUND: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. OBJECTIVES: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. METHODS: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. RESULTS: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly down-regulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. CONCLUSIONS: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.


Butylamines , Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Sulfonamides , Thiophenes , Sheep , Animals , MAP Kinase Signaling System , Caspase 3/metabolism , Caspase 9/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoribonucleases/metabolism , bcl-2-Associated X Protein/metabolism , Protein Serine-Threonine Kinases , Goats/metabolism , Apoptosis , Endoplasmic Reticulum Stress
14.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38674139

The role of metalloproteinases (MMPs) in hematological malignancies, like acute myeloid leukemia (AML), myelodysplastic neoplasms (MDS), and multiple myeloma (MM), is well-documented, and these pathologies remain with poor outcomes despite treatment advancements. In this study, we investigated the effects of batimastat (BB-94), an MMP inhibitor (MMPi), in single-administration and daily administration schemes in AML, MDS, and MM cell lines. We used four hematologic neoplasia cell lines: the HL-60 and NB-4 cells as AML models, the F36-P cells as an MDS model, and the H929 cells as a model of MM. We also tested batimastat toxicity in a normal human lymphocyte cell line (IMC cells). BB-94 decreases cell viability and density in a dose-, time-, administration-scheme-, and cell-line-dependent manner, with the AML cells displaying higher responses. The efficacy in inducing apoptosis and cell cycle arrests is dependent on the cell line (higher effects in AML cells), especially with lower daily doses, which may mitigate treatment toxicity. Furthermore, BB-94 activated apoptosis via caspases and ERK1/2 pathways. These findings highlight batimastat's therapeutic potential in hematological malignancies, with daily dosing emerging as a strategy to minimize adverse effects.


Apoptosis , Hematologic Neoplasms , Phenylalanine/analogs & derivatives , Thiophenes , Humans , Apoptosis/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Cytostatic Agents/pharmacology , Cell Proliferation/drug effects , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , HL-60 Cells , Matrix Metalloproteinase Inhibitors/pharmacology , Cell Cycle Checkpoints/drug effects , MAP Kinase Signaling System/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology
15.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article En | MEDLINE | ID: mdl-38612883

Osteoporosis stands out as a prevalent skeletal ailment, prompting exploration into potential treatments, including dietary strontium ion supplements. This study assessed the efficacy of supplementation of three strontium forms-strontium citrate (SrC), strontium ranelate (SrR), and strontium chloride (SrCl)-for enhancing bone structure in 50 female SWISS mice, aged seven weeks. In total, 40 mice underwent ovariectomy, while 10 underwent sham ovariectomy. Ovariectomized (OVX) mice were randomly assigned to the following groups: OVX (no supplementation), OVX + SrR, OVX + SrC, and OVX + SrCl, at concentrations equivalent to the molar amount of strontium. After 16 weeks, micro-CT examined trabeculae and cortical bones, and whole-bone strontium content was determined. Results confirm strontium administration increased bone tissue mineral density (TMD) and Sr content, with SrC exhibiting the weakest effect. Femur morphometry showed limited Sr impact, especially in the OVX + SrC group. This research highlights strontium's potential in bone health, emphasizing variations in efficacy among its forms.


Citric Acid , Osteoporosis , Strontium , Thiophenes , Female , Animals , Mice , Bone Density , Chlorides , Citrates , Osteoporosis/drug therapy , Halogens , Disease Models, Animal
16.
Anal Chem ; 96(17): 6847-6852, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38639290

Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.


Copper , Electrochemical Techniques , Sulfides , Thiophenes , Electrochemical Techniques/instrumentation , Copper/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Biosensing Techniques/instrumentation , Bismuth/chemistry , Transistors, Electronic , Photochemical Processes , Polystyrenes/chemistry , MicroRNAs/analysis , Electrodes , Polymers/chemistry
19.
Eur J Pharmacol ; 972: 176589, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38631503

We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 µM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 µM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 µM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 µM) and XE991 (10 µM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 µM) and cyclopiazonic acid (10 µM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 µM) and KT5720 (1 µM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.


Cyclic AMP-Dependent Protein Kinases , Femoral Artery , Glucosides , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Signal Transduction , Thiophenes , Vasodilation , Animals , Rabbits , Femoral Artery/drug effects , Femoral Artery/physiology , Vasodilation/drug effects , Signal Transduction/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Thiophenes/pharmacology , Male , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Vasodilator Agents/pharmacology , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors
20.
BMC Pregnancy Childbirth ; 24(1): 235, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575932

BACKGROUND: Vaginal candidiasis (VC) commonly affects pregnant women. Traditionally, clotrimazole vaginal tablets (CLO) have been the cornerstone of management. However, sertaconazole ovules (SER) offer a novel topical antimycotic option. This double-blinded, randomized trial evaluated the efficacy of single-dose SER and CLO in treating acute VC during pregnancy. METHODS: From June 2020 to May 2021, this trial recruited pregnant women aged ≥ 18 years with VC symptoms (abnormal vaginal discharge and/or vulvar/vaginal itching) confirmed by microscopy. Participants with ≥ 4 VC episodes in the prior year, immunocompromised status, or imidazole contraindications and those who were absent at the 2-week follow-up were excluded. Participants were randomized to receive either 300 mg SER or 500 mg CLO. Evaluations 2 weeks after the initial medication administration included clinical cure (self-reported resolution of all symptoms), microscopic cure (pseudohyphal absence), patient satisfaction, side effects, and time to clinical cure. Participants with persistent VC received weekly SER doses until delivery. Assessments of recurrence and pregnancy outcomes were done. RESULTS: The analysis included 96 participants (48 per group, mean age 27.4 ± 7.4 years, gestational age at diagnosis 22.9 ± 6.4 weeks). Without statistical significance, SER achieved a higher clinical cure rate (62.5% vs 50%, p = 0.217; a mean difference of 12.5%, 95%CI: -17.5% to 42.5%; and a rate ratio of 1.25, 95%CI: 0.71 to 2.23) and a lower microscopic cure (47.9% vs. 62.5%, p = 0.151; a mean difference of -14.6%, 95%CI: -44.3% to 15.1%; and a rate ratio of 0.77, 95%CI: 0.43 to 1.37). The two groups had comparable times to clinical cure (SER: 3.1 ± 1.8 days, CLO: 3.4 ± 2.7 days; p = 0.848) and substantial satisfaction rates (SER: 66.7%, CLO: 60.4%; p = 0.753). No side effects were reported. Of 60 participants who gave birth at Siriraj Hospital, there were no significant differences in pregnancy outcomes. Repeated SER dosing eradicated symptoms and enhanced the microscopic cure rate. Recurrence was observed in four SER and two CLO participants within 1-2 months. CONCLUSION: In the treatment of acute VC during pregnancy, 300 mg SER and 500 mg CLO exhibited comparable efficacy in terms of clinical and microscopic cure rates, satisfaction, side effects, time to clinical cure, recurrence rates, and pregnancy outcomes. TRIAL REGISTRATION: TCTR20190308004 (registration date March 8, 2019).


Candidiasis, Vulvovaginal , Clotrimazole , Thiophenes , Female , Pregnancy , Humans , Young Adult , Adult , Clotrimazole/therapeutic use , Antifungal Agents/therapeutic use , Pregnant Women , Suppositories , Candidiasis, Vulvovaginal/drug therapy , Imidazoles/therapeutic use
...